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In a recent paper [Phys. Rev. E 48, 1547 (1993)] Li, Ford, and O’Connel argue that the power lost
through dissipation by a system in equilibrium with a thermal reservoir is compensated by the action of
a fluctuation force that the reservoir exerts on the system. Their analysis is quantum mechanical and
their expression for the power supplied by the reservoir remains positive definite even at absolute zero.
This Comment outlines an analysis of a harmonic oscillator coupled to a loss mechanism and shows how
the quantum-mechanical formalism should be interpreted to avoid unphysical conclusions. An explicit
distinction is made between thermal and zero-point fluctuations, and the physical significance of the

latter is discussed.

PACS number(s): 05.30.—d, 05.40.+j, 42.50.Lc

It is well known that a loss mechanism (LM) that pro-
duces dissipation in a given system will also exert a fluc-
tuating force on that system. In a recent paper [1], Li,
Ford, and O’Connel discuss the relationship between the
power supplied by the fluctuation force and the power
lost to the LM. This energy exchange is analyzed quan-
tum mechanically, and the fluctuations considered refer
to both thermal and quantum fluctuations. However, by
not distinguishing between the two, the authors obtain
results that are misleading. They begin with a phenome-
nological, quantum-mechanical, generalized Langevin
equation for a particle of mass m in a potential V,

dV(x)
dx

where p(t) is the dissipation function and F (¢) is the fluc-
tuation force exerted by the LM. They then consider a
harmonic oscillator with ¥V=1mawyx? in equilibrium
with the LM, and calculate “the expectation value of the
instantaneous power supplied by the fluctuation force,
Pr.” The result is

mi+ [1 dept—xe)+ S 2 =F0),

Py ——f dcoco3|a((u |2 [Re,u(w)] coth

fiw
2kT
where

alw)=[m(oj—o?)—iof(w)] ™!
and

il(a))=f0wdty(t)e"“" , Imo>0.

As the authors state, “it is immediately clear P, >0 al-
ways.” In particular, this inequality also holds for T'=0.
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The authors therefore imply that the LM —or essentially
a thermal reservoir—can supply power when its temper-
ature is absolute zero. It is true that, according to quan-
tum mechanics, there do exist fluctuations at 7 =0,
zero-point fluctuations, but these fluctuations cannot do
work. (Otherwise, a system in the ground state would
have to give up energy.) The following discussion shows
how the quantum-mechanical formalism describing the
coupling of a harmonic oscillator to a LM should be in-
terpreted in order to yield physically reasonable con-
clusions.

The quantum mechanics of a harmonic oscillator with
dissipation was discussed in several early papers on dissi-
pation in quantum mechanics [2—4]. The oscillator con-
sidered there is one that describes the behavior of an elec-
tromagnetic mode in a cavity, of interest in quantum op-
tics, for which the ratio of period to relaxation time is
much smaller than unity. The Hamiltonian of the oscilla-
tor is given by

Hosc:%ﬁw(q2+p2) ’ (1a)

where o is the resonant frequency, and g and p are the
dimensionless coordinate and momentum, respectively,
with [g,p]=i. An alternative useful form is

H, =tio(ata+1 1), (1b)

' are the annihilation and creation
respectively, with a=2"12(q +ip),
—ip), and [a,aT]= 1. The LM has the prop-
erties of a thermal reservoir, is not specialized to a
specific model, and is weakly coupled to the oscillator.
With approximations based on the general properties of
the LM and the smallness of the ratio of period to relaxa-

where a and a

ogerators,
=2 1/2
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tion time, Langevin equations are derived for the oscilla-
tor variables. Assuming that the coupling between the
oscillator and the LM begins at ¢t =0, and in the absence
of a prescribed driving force, the solutions, for t >>w ™!,

are given by [2]

q(t)=q(")(t)e —(1/2)Bt

—(1/2)Bt—1,)
c

+fotdt1F(t1)e osw(t—ty), (2a)

p(8)=p'r)e =1 /2B

t —(1/2)B(t— .
= [lanFape T

sino(t—t;). (2b)

The variables ¢°X(¢) and p‘°(¢) refer to the free oscillator
and contain the initial values. The effects of the LM are

J

%(HOSC)=%ﬁw(qq +pp ) +c.c.

=4 —Blg*+p*)+ [t ({F(1)),F(D) e

1

=fiw —%B(q2+p2)+3 %-*—W
e _

where the notation { 4,B}=AB-+BA is used. It ap-
pears that the first term in the square brackets indicates
the rate of energy loss due to dissipation, and the second
term indicates the rate of energy gain due to the action of
the fluctuation force. Thus one might conclude from the
formalism that even when the LM is at zero temperature
it transfers energy to the oscillator—the conclusion of
Li, Ford, and O’Connel. Since a system in the ground
state has no energy to transfer, this cannot be a correct
conclusion.

Let us consider, now, the expression of Eq. (1b) instead
of that of Eq. (1a) for the Hamiltonian of the oscillator.
We obtain

%(Hosa:fm(a*aw*a) . )

Noting that
a(t)=a(")(t)e —(1/2)Bt

1 t —[(1/2)B+iw)(t—1,)
+‘—/?fodt1F(tl)e ,

we get

3‘?;<Hosc>=hw[—3<a*a>+2—1/2<Fa+afp>]. ©)

It is clear that the second term in the square brackets is
the power (in units of #iw) that the LM transmits to the
oscillator. A calculation yields

d _ + 1
E(HOSC>—ﬁa} —B(a a>+ﬁ?«o/k—7‘_—1— . (7
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determined by the decay constant B and the Gaussian

fluctuation force (a quantum-mechanical operator)
specified by [5]
(F())=0, (3a)

(F(t,)F(t,))=B [%8’(t1—t2)

1 1
+256(¢,—t,) {E"le—] } .

(3b)

A calculation of the expectation value of the power ab-
sorbed by the oscillator, using Eq. (1a), yields

—(1/2)B(t—1,)
Veosw(t—1t,)} ,

I ) (4)

According to this equation, the LM transfers energy to
the oscillators only for T'>0, as is to be expected on
physical grounds. There is no inconsistency, of course,
between this equation and Eq. 4). If we write
%(q2+p2)=afa +1, Eq. (4) reduces to Eq. (6).

Neither Eq. (4) nor Eq. (6) depend on the existence of a
state of equilibrium. They apply no matter what the
values of the oscillator energy or the LM temperature
may be. Since the quantities {(a'a) and (e®™/kT—1)"!
are independent, it is obvious that the loss of oscillator
energy above that of the zero point and the gain of ener-
gy due to thermal fluctuations are independent processes.
However, this independence does not apply to the “loss”
of zero-point oscillator energy and the ‘“gain” due to
zero-point fluctuations of the LM. These always cancel
in the formalism and are not part of the real physical pro-
cesses of energy transfer. The oscillator cannot, in reali-
ty, lose its zero-point energy, just as the LM cannot, in
reality, provide energy at T'=0. The following question
therefore arises: what effect do the zero-point fluctua-
tions of the LM have on the oscillator?

The effect turns out to be twofold. In part, it is purely
formal. If the LM did not display zero-point fluctua-
tions, there would be no cancellation of the formal loss of
zero-point energy by the oscillator. Thus the self-
consistency of quantum mechanics requires it. In part,
the effect is also physical. This is best seen by examining
the correlation function { {g(t,),q(,)}) for both the un-
damped and damped oscillator. For the undamped oscil-
lator in an energy state |n ), we have

({g'9(t1),q4'°(2,)} ) =(2n +1)cosw(t, —t,) .

If coupling to the LM begins at ¢ =0, one obtains
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( {Q(h),q(tz)} >=(2n +1)€_(1/2)B(t1+t2)

—(1/72)Blt, —1,| —e —(1/2)B(t, +t2)]

cosw(t; —t,)
+2[e
X[L+(ef/kT—1)"cosw(t, —1,) ,

where an approximation based on /@ <<1 has been
used. For the steady state, one has

< {q(tl ),q(tz)} )=2[%+(eﬁ“’/kr—-1)_l]e —(1/2)B|t1—t2|

Xcosw(t;—t,) .

Although the zero-point energy of the undamped and
damped oscillators is the same, it is seen that the zero-
point motion is different. For the undamped oscillator it
is a pure sinusoidal oscillation, and for the damped oscil-
lator it is a noisy sinusoidal oscillation. Since the zero-
point fluctuations of the LM may be regarded as noise,
we can interpret this effect as a modulation of the zero-
point motion of the oscillator, a modulation which does
not require work. Such “effortless” modulation effects,
which have been discussed previously [6], are associated
with quantum noise.
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